Decomposition of regional convergence in population ageing across Europe

ILYA KASHNITSKY
JOOP DE BEER
LEO VAN WISSEN

European Population Conference 2016
Mainz, Germany, 2016-09-02
We investigate how regional differences in ageing develop over time
INTRO

We investigate how regional differences in ageing develop over time, and what demographic factors drive them.
INTRO

We investigate how **regional differences in ageing** develop over time, and what demographic **factors** drive them.

We apply the methodological framework of **convergence analysis**.
INTRO: 2 CONCEPTS OF CONVERGENCE

sigma

value

0 1 2 3 4

time

t1 t2

beta

growth

0 0.1 0.2

initial level

0 1 2 3 4
INTRO

We investigate how regional differences in ageing develop over time, and what demographic factors drive them.

We apply the methodological framework of convergence analysis.

Measure variable is Total Support Ratio (working-age to non-working-age ratio, inverse of Total Dependency Ratio, 15-64).
DATA
DATA

EU-28, 263 NUTS-2 regions
DATA

EU-28, 263 NUTS-2 regions
Observed period: 2003-2012 (Eurostat + nat.)
DATA

EU-28, 263 NUTS-2 regions
Observed period: 2003-2012 (Eurostat + nat.)
Projected period: 2013-2042 (EUROPOP2013)
DATA

EU-28, 263 NUTS-2 regions
Observed period: 2003-2012 (Eurostat + nat.)
Projected period: 2013-2042 (EUROPOP2013)
METHODS 1 - DECOMPOSITION

TSR
change
METHODS 1 - DECOMPOSITION

Two-step decomposition of the changes in WR

TSR change
Two-step decomposition of the changes in WR

1. TSR change
 - Change in non-working age population
 - Change in working-age population
Two-step decomposition of the changes in WR

\[TSR_2 - TSR_1 = \frac{W_2}{NW_2} - \frac{W_1}{NW_1} = \]

\[= \left[\frac{1}{2} \times (W_2 + W_1) \times \left(\frac{1}{NW_2} - \frac{1}{NW_1} \right) \right] + \left[\frac{1}{2} \times \left(\frac{1}{NW_2} + \frac{1}{NW_1} \right) \right] \times (W_2 - W_1) \]

Two-step decomposition of the changes in WR

1. TSR change
 - Change in non-working age population
 - Mortality age 15-64
 - Migration age 15-64
 - Cohort turnover

2. Change in working-age population
METHODS 1 - DECOMPOSITION

Two-step decomposition of the changes in WR

\[W_2 = W_1 + CT + M_W - D_W \]
A. Change in TSR
A. Change in TSR

B. Non-working age

C. Working age

D. Cohort turnover

E. Migration (15-64)

F. Mortality (15-64)
METHODS 2 – BETA-CONVERGENCE
Classical linear regression model specification
METHODS 2 – BETA-CONVERGENCE

Classical linear regression model specification

\[TSR_2 - TSR_1 = \alpha + \beta TSR_1 + \varepsilon \]
METHODS 2 – BETA-CONVERGENCE

Classical linear regression model specification

\[TSR_2 - TSR_1 = \alpha + \beta TSR_1 + \varepsilon \]

A separate beta-convergence model for each effect and each year
DECOMPOSED EFFECTS

First step

Cumulative beta-coefficient

2003 2008 2013 2018 2023 2028 2033 2038 2042

Working age
Non-working age
Overall model
DECOMPOSED EFFECTS

First step

Second step

- Cohort turnover
- Migration
- Mortality
- Working age
CONCLUSIONS

Convergence in aging took place only in recent years
CONCLUSIONS

Convergence in aging took place only in recent years; the prior lack of convergence is mainly explained by the demographic development of East-European regions.
CONCLUSIONS

Convergence in aging took place only in recent years; the prior lack of convergence is mainly explained by the demographic development of East-European regions.

The effects of changes in NW and W on TSR are comparable.
Convergence in aging took place only in recent years; the prior lack of convergence is mainly explained by the demographic development of East-European regions.

The effects of changes in NW and W on TSR are comparable.

The effect of working-age population’s dynamics on convergence in ageing is mainly driven by mortality.
CONCLUSIONS

Convergence in aging took place only in recent years; the prior lack of convergence is mainly explained by the demographic development of East-European regions.

The effects of changes in NW and W on TSR are comparable.

The effect of working-age population’s dynamics on convergence in ageing is mainly driven by mortality; the impact of cohort turnover is expected to rise.
CONCLUSIONS

Convergence in aging took place only in recent years; the prior lack of convergence is mainly explained by the demographic development of East-European regions.

The effects of changes in NW and W on TSR are comparable.

The effect of working-age population’s dynamics on convergence in ageing is mainly driven by mortality; the impact of cohort turnover is expected to rise; the effect of migration is notable in the observed period and is almost non-existent in the projected period.
thank you

ILYA KASHNITSKY
kashnitsky@nidi.nl
ilya.kashnitsky@gmail.com

JOOP DE BEER

LEO VAN WISSEN

NIDI is an institute of the Royal Netherlands Academy of Arts and Sciences KNAW and is affiliated to the University of Groningen
www.nidi.nl